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Abstract
We derive explicit expressions for Green functions and some related
characteristics of the Rashba and Dresselhaus Hamiltonians with a uniform
magnetic field.

PACS numbers: 75.10.Dg, 02.30.Tb, 71.70.Ej
Mathematics Subject Classification: 81Q05, 34B27, 35J10

1. Introduction

The Green function of a quantum Hamiltonian (integral kernel of the resolvent) is one of the
characteristics whose knowledge usually permits us to perform the complete spectral analysis
and to study various perturbations. The aim of the present communication is to obtain explicit
expressions for the Green function for a class of spin–orbit Hamiltonians, namely, for the
Rashba and Dresselhaus Hamiltonians with uniform magnetic fields, whose study plays a
central role in the spintronics [1]. We use an abstract version of the construction [2], which
permits us to reduce the problem to the well-known Green functions of the Landau Hamiltonian
and the Laplacian.

2. Spin–orbit Hamiltonians

Below we use the Pauli matrices

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
and denote the identity 2 × 2-matrix by σ0.

We consider Hamiltonians of a charged two-dimensional particle in a uniform magnetic
field B orthogonal to the plane and take into account the spin–orbit interaction. Let A be the
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magnetic vector potential, i.e. B = ∂Ay

∂x
− ∂Ax

∂y
. In what follows we use the symmetric gauge,

A(x, y) = (
By

2 ,−Bx
2

)
. Denote as usual pj := −ih̄∇j and �j := pj − e

c
Aj , j = x, y. The

Hamiltonian without spin–orbit interaction acts in the spinor space L2(R2, C
2) and takes the

form Ĥ 0 = 1
2m∗

Π2σ0. We are interested in the following two types of spin–orbit Hamiltonians.

The first one, the Rashba Hamiltonian Ĥ R, is of the form

Ĥ R = Ĥ 0 +
αR

h̄
ÛR +

g∗
2

µBBσz, ÛR = σx�y − σy�x,

where µB ≡ |e|h̄
2mec

is the Bohr magneton (me is the electron mass), g∗ is the effective g-factor,

and αR is the real-valued Rashba constant (whose dimension is ML3T −2) expressing the
strength of the spin–orbit interaction. The second one, the Dresselhaus Hamiltonian, is given
by

Ĥ D = Ĥ 0 +
αD

h̄
ÛD +

g∗
2

µBBσz, ÛD = σy�y − σx�x,

and αD is the real-valued Dresselhaus constant (whose dimension is ML3T −2) expressing the
strength of the spin–orbit interaction.

In what follows we use mostly dimensionless coordinates introduced as follows. Denote
�J := m∗αJ

h̄2 , J = R, D. Furthermore, denote by �0 the magnetic flux quantum, �0 := 2πh̄c
e

,

and let b := 2π
�0

B and a := 2π
�0

A = (
by

2 ,− bx
2

)
. Now by setting k := 1

h̄
p, K := k − a and

introducing the coefficient γ := − g∗
2

m∗
me

we rewrite the above Hamiltonians as Ĥ J = h̄2

2m∗
HJ,

J = 0, R, D, where

H0 = K2σ0, HR = H0 + 2�RUR + γ bσz,

UR = σxKy − σyKx, HD = H0 + 2�DUD + γ bσz,

UD = σyKy − σxKx.

In what follows we work with these new normalized Hamiltonians HJ.

3. Reduction to scalar case

We start with a simple resolvent identity which is an abstract version of the construction from
[2] and which is of crucial importance in all our considerations.

For simplicity, for any self-adjoint operator A and a complex number E we use the notation
R(A,E) := (A−E)−1. Now let A be a self-adjoint operator acting in a certain Hilbert space,
α ∈ R. Denote B := A2 + 2αA.

Let E ∈ C\spec B, then (B −E)−1 = [(A + α)2 − (E + α2)]−1 = [(A + α −η)(A + α +
η)]−1, where η =

√
E + α2 (here and below in this section

√
z is a fixed continuous branch

of the square root on the complex plane C with an appropriate cut).
If both the numbers η −α and −η −α are outside of spec A (in particular, if �η �= 0) and

η �= 0, then

((A + α − η)(A + α + η))−1 = 1

2η
((A − η + α)−1 − (A + η + α)−1).

If, in addition, −η + α /∈ spec A and η + α /∈ spec A, then (A − η + α)−1 − (A + η + α)−1 =
(A + η − α)(A2 − (η − α)2)−1 − (A − η − α)(A2 − (η + α)2)−1. As a result, we arrive at the
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identity

R(B;E) = 1

2η
((A + η − α)R(A2; (η − α)2) − (A − η − α)R(A2; (η + α)2))

= A − α

2η
(R(A2; (η − α)2) − R(A2; (η + α)2))

+
1

2
(R(A2; (η − α)2) + R(A2; (η + α)2)). (1)

Our aim now is to calculate the Green functions for HR and HD using equation (1).
Consider an operator VJ = UJ + βJσz, where βJ is a real constant which will be chosen

later, J = R, D. Using the commutation relation KxKy − KyKx = ib and the elementary
properties of the Pauli matrices one easily obtains

V 2
R = (

H0 + β2
R

)
σ0 − bσz, V 2

D = (
H0 + β2

D

)
σ0 + bσz. (2)

Therefore,

HJ = V 2
J + 2�JVJ − β2

J σ0, J = R, D, for βR := γ + 1

2�R
b, βD := γ − 1

2�D
b. (3)

3.1. The free case

We consider here the case without a magnetic field, b = 0. Then equation (3) reads simply
as HJ = U 2

J + 2�JUJ with U 2
J = H0 ≡ −�σ0. Clearly, spec HJ = f (spec UJ) for f (x) =

x2 + 2�Jx. We see that spec UJ = R (see the appendix), hence spec HJ = [−�2
J , +∞)

and the
spectrum contains no eigenvalues.

Note that the Green function G0(x, y; z) of H0 is known explicitly,

G0(r, r′; z) = 1

2π
K0(

√−z|r − r′|),
where K0 is the McDonald function and

√
x > 0 for x > 0. Hence, by (1), the Green function

GJ, which is the integral kernel of the resolvent (HJ − z)−1, has the form

GJ(r, r′; z) = 1

4π

[
1

i
√

−(
z + �2

J

) (UJ − �J)
(
K0

(
ζ +

J |r − r′|) − K0
(
ζ−

J |r − r′|))

+ K0
(
ζ +

J |r − r′|) + K0
(
ζ−

J |r − r′|)]σ0, (4)

ζ±
J =

√
−(

z + �2
J

) ± i�J,

where UJ acts as a differential expression with respect to r. Applying the identity
K ′

0(t) = −K1(t) one concludes that

GJ(r, r′; z) =
(

G11
J (r, r′; z) G12

J (r, r′; z)

G21
J (r, r′; z) G22

J (r, r′; z)

)
,

with

G11
J (r, r′; z) = G22

J (r, r′; z) = 1

4π

[
− �J

i
√

−(
z + �2

J

)
×(

K0
(
ζ +

J |r − r′|) − K0
(
ζ−

J |r − r′|)) + K0
(
ζ +

J |r − r′|) + K0
(
ζ−

J |r − r′|)
]
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for both J = R, D, and

G12
R (r, r′; z) = i(y − y ′) − (x − x ′)

4π i
√

−(
z + �2

R

)|r − r′|
× [

ζ +
RK1

(
ζ +

R |r − r′|) − ζ−
R K1

(
ζ−

R |r − r′|)],
G12

D (r, r′; z) = (y − y ′) − i(x − x ′)

4π i
√

−(
z + �2

D

)|r − r′|
× [

ζ +
DK1

(
ζ +

D|r − r′|) − ζ−
D K1

(
ζ−

D |r − r′|)],
and G21

J (r, r′; z) = G12
J (r′, r; z̄). We note that such a representation of the Green function

was essentially obtained in [2] for special values of z.

3.2. The magnetic case

Using (3) one can easily calculate the spectrum of HJ. Namely, spec HJ = g(spec VJ) with
g(x) = x2 + 2�J −β2

J . The spectrum of VJ can be calculated using the results of the appendix.
Note that the spectrum of H0 consists of the Landau levels, spec H0 = {|b|(2n + 1) : n ∈ N}.

Consider first the Rashba case. By (2) we have spec V 2
R = {|b|(2n+1−s sign b)+β2

R : n ∈
N, s = ±1

}
and, respectively, spec VR = {±√

|b|(2n + 1 − s sign b) + β2
R : n ∈ N, s = ±1

}
.

Hence, the spectrum of HR consists of the Rashba levels, spec HR = {ε±(n, s) : n ∈ N, s =
±1}, ε±(n, s) = |b|(2n + 1 − s sign b) ± 2�R

√
β2

R + |b|(2n + 1 − s sign b).
For the Dresselhaus case one has, exactly in the same way, spec V 2

D = {|b|(2n + 1 +

s sign b) + β2
D : n ∈ N, s = ±1

}
, spec VD = {±√

|b|(2n + 1 + s sign b) + β2
D : n ∈ N, s =

±1
}
, and the spectrum of HD consists of the Dresselhaus levels, spec HD = {ε±(n, s) : n ∈

N, s = ±1}, ε±(n, s) = |b|(2n + 1 + s sign b) ± 2�D

√
β2

D + |b|(2n + 1 + s sign b). We note
that the formulas for the eigenvalues were obtained e.g. in [3] by a different method.

Now let us pass to the calculation of the Green functions. Note that H0 has the following
Green function:

G0(r, r′; z) = 1

4π
�

(
1

2
− z

2|b|
)

× exp

(
ib

2
(r ∧ r′) − |b|

4
(r − r′)2

)
�

(
1

2
− z

2|b| , 1; |b|
2

(r − r′)2

)
,

where � is the confluent hypergeometric function [4]. Clearly,

(
V 2

R/D − z
)−1 =

((
H0 − (

z − β2
R/D ± b

))−1
0

0
(
H0 − (

z − β2
R/D ∓ b

))−1

)
, (5)

where +/− corresponds to R/D. Set now ηJ :=
√

z + �2
J + β2

J and

ζ±
R (b) := (ηR ± �R)2 + b − β2

R, ζ±
D (b) := (ηD ± �D)2 − b − β2

D.

By (1), we have

(HJ − z)−1 = VJ − �J

2ηJ

((
V 2

J − (ηJ − �J)
2
)−1 − (

V 2
J − (ηJ + �J)

2
)−1)

+
1

2

((
V 2

J − (ηJ − �J)
2)−1

+
(
V 2

J − (ηJ + �J)
2)−1)

.
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Passing to the Green function, we obtain

GJ(r, r′; z) = UJ + βJσz − �J

2ηJ

×
(

G0
(
r, r′; ζ−

J (b)
) − G0

(
r, r′; ζ +

J (b)
)

0

0 G0
(
r, r′; ζ−

J (−b)
) − G0

(
r, r′; ζ +

J (−b)
)
)

+
1

2

(
G0

(
r, r′; ζ−

J (b)
)

+ G0
(
r, r′; ζ +

J (b)
)

0

0 G0
(
r, r′; ζ−

J (−b)
)

+ G0
(
r, r′; ζ +

J (−b)
)
)

. (6)

Here UJ is considered as a differentiation operator with respect to r. Using the identity
d�(a, c, x)/dx = −a�(a + 1, c + 1, x) one can write more explicit expressions for the Green
function. Namely,

GJ(r, r′; z) =
(

G11
J (r, r′; z) G12

J (r, r′; z)

G21
J (r, r′; z) G22

J (r, r′; z)

)
,

with

G11
J (x, y; z) = βJ − �J

2ηJ

(
G0

(
r, r′; ζ−

J (b)
) − G0

(
r, r′; ζ +

J (b)
))

+
1

2

(
G0

(
r, r′; ζ−

J (b)
)

+ G0
(
r, r′; ζ +

J (b)
))

,

G22
J (r, r′; z) = −βJ + �J

2ηJ

(
G0

(
r, r′; ζ−

J (−b)
) − G0

(
r, r′; ζ +

J (−b)
))

+
1

2

(
G0

(
r, r′; ζ−

J (−b)
)

+ G0
(
r, r′; ζ +

J (−b)
))

for both J = R, D,

G12
R (r, r′; z) = |b|((x − x ′)− i(y − y ′))

(
sign b − 1

2

[
G0

(
r, r′; ζ−

J (−b)
)− G0

(
r, r′; ζ +

J (−b)
)]

+
[
F0

(
r, r′; ζ−

J (−b)
) − F0

(
r, r′; ζ +

J (−b)
)])

,

G12
D (r, r′; z) = |b|((y − y ′)− i(x − x ′))

(
sign b + 1

2

[
G0

(
r, r′; ζ−

J (−b)
)− G0

(
r, r′; ζ +

J (−b)
)]

− [
F0

(
r, r′; ζ−

J (−b)
) − F0

(
r, r′; ζ +

J (−b)
)])

.

and G21
J (r, r′; z) = G12

J (r′, r; z̄), where

F0(r, r′; z) = 1

4π

(
z

2|b| − 1

2

)
�

(
1

2
− z

2|b|
)

× exp

(
ib

2
(r ∧ r′) − |b|

4
(r − r′)2

)
�

(
3

2
− z

2|b| , 2; |b|
2

(r − r′)2

)
.

4. Renormalized Green functions

In some applications it is necessary to know the renormalized Green function, namely
the values Gren

J (r, r; z) given by Gren
J (r, r; z) = limr′→r[GJ(r, r′; z) − S(r, r′)], where

S(r, r′; z) := − 1
2π

log |r − r′|σ0 is the on-diagonal singularity. Terms of this kind appear
e.g. when calculating the so-called Wigner R-matrix.
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Consider first the case b = 0. We will use representation (4) for the Green function.
Using the expansion

K0(z) =
∞∑

m=0

1

(m!)2

(
z2

2

)m

(ψ(m + 1) + log 2 − log z)

one easily sees that G12
J (r, r′; z) are continuous functions vanishing at r = r′, which means

that Gren
J is diagonal. To calculate the diagonal terms we use the equality

Q(z) := lim
r→0+

1

2π
(K0(

√−zr) + log r) = 1

2π

(
ψ(1) − 1

2
log(−z) + log 2

)
.

Hence,

Gren
J (r, r; z) =

[
− �J

2i
√

−(
z + �2

J

) (Q(ζ +) − Q(ζ−)) +
1

2
(Q(ζ +) + Q(ζ−))

]
σ0

= 1

2π

⎡
⎣ψ(1) − 1

2
log

(
− z

4

)
+

�J

2i
√

−(
z + �2

J

) log

√
−(

z + �2
J

)
+ i�J√

−(
z + �2

J

) − i�J

⎤
⎦ σ0,

which is independent of r due to the translational symmetry of the Hamiltonian.
For the magnetic case (b �= 0) we use the expansions [4]

�(a, n + 1, x) = − (−1)n

�(a − n)

[
�(a, n + 1, x) log x +

∞∑
r=0

(a)r

(n + 1)rr!
(ψ(a + r)

− ψ(1 + r) − ψ(1 + n + r))xr

]
+

(n − 1)!

�(a)

n−1∑
r=0

(a − n)r

(1 − n)r

xr−n

r!
,

�(a, c, x) =
∞∑

r=0

(a)r

(c)rr!
xr, (a)r := �(a + r)

�(a)
.

The above expansions clearly show that the off-diagonal terms of Gren
J vanish. To express the

diagonal terms we use the function

Q(z) := lim
r→r′

(
G0(r, r′; z) +

1

2π
log|r − r′|

)
= − 1

4π

(
ψ

(
1

2
− z

2|b|
)

− 2ψ(1) + log
|b|
2

)
,

then

Gren
J (r, r, z) = βJσz − �J

2ηJ

(
Q

(
ζ−

J (b)
) − Q

(
ζ +

J (b)
)

0

0 Q
(
ζ−

J (−b)
) − Q

(
ζ +

J (−b)
)
)

+
1

2

(
Q

(
ζ−

J (b)
)

+ Q
(
ζ +

J (b)
)

0

0 Q
(
ζ−

J (−b)
)

+ Q
(
ζ +

J (−b)
)
)

.
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Appendix. Supersymmetric spectral analysis

For the sake of completeness, here we are going to prove the following.

Proposition. Let H1,H2 be Hilbert spaces, A be a closed densely defined linear operator
from H1 to H2, and m � 0. On H1 ⊕ H2 consider the operator L := (

m A∗
A −m

)
. Then

spec L = −
√

spec(AA∗ + m2) ∪
√

spec(A∗A + m2), (A.1)

and the same correspondence holds for the eigenvalues.

Proof. First, it is well known [5] that spec AA∗\{0} = spec A∗A\{0}. Clearly,

L2 =
(

A∗A + m2 0
0 AA∗ + m2

)
. (A.2)

Therefore, spec L2\{m2} = spec(AA∗ + m2)\{m2}, and for any λ ∈ spec AA∗\{0} ≡
spec AA∗\{0} at least one of the numbers −

√
λ + m2,

√
λ + m2 lies in spec L. Let us show

that actually they both are in the spectrum of L.
Let λ > 0, λ ∈ spec A∗A, then there exists a sequence (φn) with φn ∈ dom A∗A ⊂ dom A

such that ‖φn‖ � 1 and lim(A∗A − λ)φn = 0. Denote ψn := [
λ +

(√
λ + m2 − m

)(0 A∗
A 0

)](
φn

0

)
.

Clearly,
(
φn

0

) ⊥ (0 A∗
A 0

)(
φn

0

)
, which implies

‖ψn‖ � λ‖φn‖ � λ. (A.3)

By direct calculation, (L −
√

λ + m2)ψn = (√
λ + m2 − m

)(
(A∗A−λ)φn

0

)
. Therefore,

lim(L −
√

λ + m2)ψn = 0. Together with (A.3) this implies
√

λ + m2 ∈ spec L.
To show −

√
λ + m2 ∈ spec L one has to consider the functions

ψn :=
[
λ − (√

λ + m2 − m
) (

0 A∗

A 0

)](
0
φn

)
,

where φn ∈ dom AA∗ ⊂ dom A∗, ‖φn‖ � 1, and lim(AA∗ −λ)φn = 0 and to repeat the above
steps. To finish the proof of equation (A.1) it is necessary to study the points ±m. Not that
it is sufficient to consider the situation when ±m is an isolated point in spec L (in particular,
an eigenvalue of L), as for the continuous spectrum the result follows by taking the closure of
spec L\{−m,m}.

For m = 0, equation (A.2) reads as spec L2 = spec AA∗ ∪ spec A∗A, and the conditions
0 ∈ spec L and 0 ∈ spec AA∗ ∪ spec A∗A are equivalent.

Assume m �= 0 and m is an eigenvalue of L, then there are φ ∈ dom A and ϕ ∈ dom A∗

with ‖φ‖+‖ϕ‖ > 1 such that (L−m)
(
φ

ϕ

) ≡ (
A∗ϕ

Aφ−2mϕ

) = 0. Clearly, this implies Aφn ∈ dom A∗

and A∗Aφ = 0. If φ = 0, then also ϕ = 0, which contradicts to the choice. Therefore, φ is
an eigenvector of A∗A.

Assume now that 0 is an eigenvalue of A∗A, then there is a nonzero vector φ ∈ dom A∗A ⊂
dom A with 〈A∗Aφn, φn〉 ≡ ‖Aφ‖ = 0. Then (L − m)

(
φ

0

) = ( 0
Aφ

) = 0, from which
m ∈ spec L.

The relationship between the conditions −m ∈ L and 0 ∈ spec AA∗ can be proved in a
completely similar way. �
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[4] Erdélyi A (ed) 1953 Higher Transcendental Functions vol 1 (New York: McGraw-Hill)
[5] Deift P 1978 Applications of a commutation formula Duke Math. J. 45 267–310

http://dx.doi.org/10.1215/S0012-7094-78-04516-7

	1. Introduction
	2. Spin--orbit Hamiltonians
	3. Reduction to scalar case
	3.1. The free case
	3.2. The magnetic case

	4. Renormalized Green functions
	Acknowledgments
	Appendix. Supersymmetric spectral analysis
	References

